Orlicz Spaces and the Large Scale Geometry of Heintze Groups
نویسنده
چکیده
We consider an Orlicz space based cohomology for metric (measured) spaces with bounded geometry. We prove the quasi-isometry invariance for a general Young function. In the hyperbolic case, we prove that the degree one cohomology can be identified with an Orlicz-Besov function space on the boundary at infinity. We give some applications to the large scale geometry of homogeneous spaces with negative curvature (Heintze groups). As our main result, we prove that if the Heintze group is not of Carnot type, any self quasi-isometry fixes a distinguished point on the boundary and preserves a certain foliation on the complement of that point.
منابع مشابه
$(A)_ {Delta}$ - double Sequence Spaces of fuzzy numbers via Orlicz Function
The aim of this paper is to introduce and study a new concept ofstrong double $(A)_ {Delta}$-convergent sequence offuzzy numbers with respect to an Orlicz function and also someproperties of the resulting sequence spaces of fuzzy numbers areexamined. In addition, we define the double$(A,Delta)$-statistical convergence of fuzzy numbers andestablish some connections between the spaces of stron...
متن کاملStrongly $[V_{2}, lambda_{2}, M, p]-$ summable double sequence spaces defined by orlicz function
In this paper we introduce strongly $left[ V_{2},lambda_{2},M,pright]-$summable double vsequence spaces via Orlicz function and examine someproperties of the resulting these spaces. Also we give natural relationshipbetween these spaces and $S_{lambda_{2}}-$statistical convergence.
متن کاملOn difference sequence spaces defined by Orlicz functions without convexity
In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملStrongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.
متن کامل